+2- MATHEMATICS

1. The value of the integral $\int \frac{1+\ln x}{4+x \ln x} d x$ is
(A) $4+x \ln x+c$
(B) $\ln (4+x \ln x)+c$
(C) $\ln (3+x \ln x)+c$
(D) None of these
2. Value of the definite integral $\int_{2}^{4} \frac{\mid x}{x} d x$ is
(A) -2
(B) 4
(C) 0
(D) 2
3. The value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d x}{e^{\sin x}+1}$
(A) 0
(B) 1
(C) $\frac{\pi}{2}$
(D) $-\frac{\pi}{2}$
4. The area bounded by the curve $y=2 x-x^{2}$ and the line $y=-2 x$ is
(A) 1
(B) $\frac{9}{2}$
(C) $\frac{32}{3}$
(D) 8
5. $\frac{d}{d x} \int_{2}^{x^{2}} \frac{d t}{\ln t}$ is equal to
(A) $2 \ln x$
(B) $\ln x$
(C) $2 x \ln x$
(D) None of these
6. The value of the integral $\int \frac{\sin ^{2} x}{\cos ^{6} x} d x$ is
(A) $\frac{\tan ^{2} x}{3}+\frac{\tan ^{5} x}{5}+c$
(B) $\frac{\tan ^{3} x}{4}+\frac{\tan ^{6} x}{7}+c$
(C) $\frac{\tan ^{4} x}{5}+\frac{\tan ^{7} x}{8}+c$
(D) $\frac{\tan ^{3} x}{4}+\frac{\tan ^{5} x}{7}+c$
7. The domain of the function $\sqrt{x^{2}-x-2}+\frac{1}{\sqrt{3-2 x-x^{2}}}$ is
(A) $[2,3)$
(B) $(2,3]$
(C) $(2,3)$
(D) $(1,3)$
8. $\lim _{x \rightarrow \infty}\left(\frac{x^{3}}{3 x-4}-\frac{x^{2}}{3 x+2}\right)$ is equal to
(A) $\frac{2}{9}$
(B) $\frac{4}{9}$
(C) $\frac{5}{9}$
(D) $\frac{3}{9}$
9. Given the function $f(x)=\frac{1}{1-x}$. The points of discontinuity of the composite function $y=f(f(f(x)))$ is
(A) $x=0$
(B) $x=1$
(C) $x=-1$
(D) None of these
10. Let $f(x)=\left\{\begin{array}{c}x^{2} \text { if } x \leq 2 \\ a x+\text { bif } x>2\end{array}\right.$

Then the coefficients a and b at which the function is continuous and has a derivative at $x=2$ is
(A) $a=4, b=-2$
(B) $a=4, b=-4$
(C) $a=-4, b=2$
(D) $a=4, b=4$
11. The derivative of the function $y=3 x|x|$ at $x=0$
(A) 0
(B) does not exist
(C) +3
(D) -3
12. If $e^{x} \sin y-e^{y} \cos x=0$, then the value of $\left.y^{\prime}\right|_{(0,0)}$ is
(A) 2
(B) 1
(C) 0
(D) None of these
13. The minimum value of the function $f(x)=2 x^{3}-15 x^{2}-84 x+8$ occurs at
(A) $x=2$
(B) $x=-2$
(C) $x=7$
(D) -7
14. The equation of the tangent to the curve $4 x^{3}-3 x y^{2}+6 x^{2}-5 x y-8 y^{2}+9 x+14=0$ at the point $(-2,3)$ is
(A) $9 x+2 y+12=0$
(B) $7 x+3 y+5=0$
(C) $3 y+4 x-1=0$
(D) $4 x+3 y+3=0$
15. If $f(x, y)=\frac{x y}{x^{2}+y^{2}}$, then $x f_{x}+y f_{y}$ is equal to
(A) 0
(B) 1
(C) $\frac{2 x y}{x^{2}+y^{2}}$
(D) 2
16. General solution of the differential equation $\frac{d^{2} y}{d x^{2}}=x e^{x}$ is
(A) $x e^{x}+2 e^{x}+c_{1} x+c_{2}$
(B) $x e^{x}-2 e^{x}+c_{1} x+c_{2}$
(C) $x e^{x}+c x+d$
(D) None of these
17. The order and degree of the differential equation $\left(1+y^{\prime 2}\right)^{\frac{2}{3}}=y^{\prime \prime}$ is
(A) 2,2
(B) 3,2
(C) 2,3
(D) 2,4
18. The value of $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{\sin ^{2} x} \quad$ is
a) 0
b) $1 / 2$
c) 1
d) 2
19. The value of α such that $\hat{i}+2 \hat{j}+3 \hat{k}, 4 \hat{i}+\hat{j}+5 \hat{k}$ and $5 \hat{i}-4 \hat{j}+\alpha \hat{k}$ are coplanar is
(A) 0
(B) 1
(C) 2
(D) 4
20. The angle between the two lines whose direction of ratios (r.s) are $4, \sqrt{3}-1,-\sqrt{3}-1$ and $2,1,1$ respectively is
(A) 60°
(B) 45°
(C) 90°
(D) 30°
21. The term independent of x in $\left(2 x^{2}-\frac{1}{x}\right)^{6}$ is
(A) 40
(B) 60
(C) 50
(D) 70
22. If a sphere is drawn about the line segment $X Y$ as diameter where X and Y are the points $(1,2,3)$ and $(-1,1,1)$ respectively. Then the equation of the sphere is
(A) $x^{2}+y^{2}+z^{2}-3 y+4 z+4=0$
(B) $x^{2}+y^{2}+z^{2}+3 y-4 z+4=0$
(C) $x^{2}+y^{2}+z^{2}+3 y+4 z-4=0$
(D) None of these
23. The plane $5 x-y+4=0$ is parallel to
(A) $x z$-plane
(B) $z x$-plane
(C) $y z$-plane
(D) z-axis
24. The perpendicular distance between two lines $4 x-3 y+6=0$ and $8 x-6 y+2=0$ is
(A) 1
(B) 6
(C) 2
(D) 4
25. The angle between the pairs of lines $7 x^{2}+5 x y-7 y^{2}=0$ is
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$
26. If the circle passes through origin and cuts off intercepts 2 and 3 from the axes. Then its equation is
(A) $x^{2}+y^{2}-2 x-3 y=0$
(B) $x^{2}+y^{2}+2 x+3 y=0$
(C) $x^{2}+y^{2}-4 x-6 y=0$
(D) None of these
27. If the parabola whose focus is at $(6,0)$ and directrix $x=-6$, then its equation is
(A) $x^{2}=6 y$
(B) $y^{2}=24 x$
(C) $x^{2}=-6 y$
(D) $y^{2}=-24 x$
28. The eccentricity of the ellipse $9 x^{2}+16 y^{2}=576$ is
(A) $\frac{4}{3}$
(B) $\sqrt{7}$
(C) $\frac{\sqrt{7}}{4}$
(D) 7
29. The value of c for which the line $y=2 x+c$ is a tangent to the parabola $y^{2}=8 x$ is
(A) 1
(B) 2
(C) 3
(D) 5
30. The binary equivalent of 51is
(A) 101101
(B) 101001
(C) 110101
(D) 110011
31. If the matrix X is both symmetric and skew symmetric, then
(A) X is a diagonal matrix
(B) X is zero matrix
(C) X is a square matrix
(D) X can not be a matrix
32. The value of the determinant: $\left|\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & -3 \\ 3 & 5 & 7\end{array}\right|$ is
(A) 27
(B) 9
(C) 3
(D) 0
33. The value of α and β for which the system of equations

$$
\begin{array}{r}
\alpha x+y+2 z=0 \\
x+2 y+z=\beta \\
2 x+y+\alpha z=0
\end{array}
$$

has no solution is
(A) $\alpha=-1, \beta=0$
(B) $\alpha=-1, \beta \neq 0$
(C) $\alpha=2, \beta=0$
(D) $\alpha=-1, \beta=-1$
34. The cofactor of 3 in the determinant

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
-2 & 1 & -4 \\
1 & 0 & 2
\end{array}\right|
$$

(A) 0
(B) 1
(C) -1
(D) 4
35. The minimum value of the rational function $y=\frac{x^{2}-x+1}{x^{2}+x+1}$ is
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) 1
36. The condition on λ so that the quadratic function $p(x)=x^{2}-4 x+2+\lambda(x-4)^{2}$ is always positive for $x \in \square$ is
(A) $\lambda=1$
(B) $\lambda=0$
(C) $\lambda>1$
(D) None of these
37. If $a x^{2}+b x^{2}+c$ vanishes at $x=1,2,3$, then values of a, b and c are
(A) $1,-1,1$
(B) $-1,1,1$
(C) $0,0,0$
(D) $-1,-1,-1$
38. The sum of the infinite series $1+\frac{1}{\underline{2}}+\frac{1}{\underline{4}}+\frac{1}{\underline{6}}+\ldots .$. is
(A) e
(B) e^{-1}
(C) $\frac{1}{2}\left(e-e^{-1}\right)$
(D) $\frac{1}{2}\left(e+e^{-1}\right)$
39. The mean deviation about the mean for the following data $4,7,8,9,10,12,13,17$ is
(A) 4
(B) 9
(C) 3
(D) 7
40. The solution of the differential equation $\sin \left(\frac{d y}{d x}\right)=a, a \in \square ; y=3$ when $x=0$ is
(A) $\cos \left(\frac{y-3}{x}\right)=a$
(B) $\cos \left(\frac{x-3}{y}\right)=a$
(C) $\sin \left(\frac{y-3}{x}\right)=a$
(D) $\sin \left(\frac{x-3}{y}\right)=a$
41. The solution of the differential equation $\frac{d y}{d x}-e^{-x}=0$, when $y(0)=1$ is
(A) $y=e^{-x}+1$
(B) $y=-e^{-x}-2$
(C) $y=-e^{-x}+2$
(D) None of these
42. 4 boys and 4 girls sit in a row randomly. The probability that all 4 girls sit together is
(A) $\frac{1}{14}$
(B) $\frac{1}{4}$
(C) $\frac{1}{12}$
(D) $\frac{1}{16}$
43. Two identical dice are rolled. The probability that the same number will not appear in each of them is
(A) $\frac{1}{6}$
(B) $\frac{1}{18}$
(C) $\frac{5}{6}$
(D) $\frac{5}{36}$
44. The number of numbers between 10000 and 100000 can be formed by using digits $1,3,4,5,6,8$ if no digits is to appear more than once in any number is
(A) 360
(B) 720
(C) 180
(D) 90
45. A school has 6 badminton players. A team of 4 has to be sent to a tournament. The number of ways the team can be selected is
(A) 24
(B) 12
(C) 18
(D) 15
46. The value of $6\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-9\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+2$ is
(A) -3
(B) 3
(C) -1
(D) 1
47. If $x^{2}+x+1,2 x+1$ and $x^{2}-1$ are sides of a triangle, then the measure of largest angle is
(A) 135°
(B) 105°
(C) 120°
(D) 145°
48. The value of $\cot ^{-1} \sin \cos ^{-1} \sqrt{\frac{2}{3}}$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
49. The number of solution of the equation $\cos 2 x-\sin x=0, x \in(-\pi, \pi)$ is
(A) 2
(B) 3
(C) 4
(D) 1
50. If $\alpha+\beta+\gamma=\pi$ and $\cos \alpha=\cos \beta \cos \gamma$, then value of $\cot \beta \cot \gamma$ is
(A) $\frac{1}{2}$
(B) 0
(C) 1
(D) 2
51. Which of the following is a statement?
(A) What is your name?
(B) $2+x=3$
(C) Listen to me
(D) 17 is less than 1
52. Which of the following is true ?
(A) $\sim p$ and p have same truth value
(B) $p \vee q$ is true only when both p and q are true
(C) $p \Rightarrow q$ is true only when p is true but q is false
(D) None of these
53. If $X=\{x \in \square \mid 3 x-2=0\}$ (\square is the set of natural numbers), then $|X|=$
(A) 0
(B) 1
(C) 2
(D) 3
54. Which of the following is true for $X \backslash(X \cap Y)$
(A) X
(B) Y
(C) $X \cap Y^{\prime}$
(D) X^{\prime}
55. The relation $R=\{(a, a),(b, b),(c, c),(a, b)\}$ on the set $\{a, b, c\}$ is
(A) reflexive, symmetric but not transitive
(B) reflexive, transitive but not symmetric
(C) is an equivalence relation
(D) None of these
56. The function $f: \square \rightarrow \square$ (integers) given by $f(z)=3 n+1$ is
(A) bijective
(B) onto
(C) one -to-one
(D) None of these
57. The graph of the function $f(x)=3^{x}$ lies on
(A) $1^{\text {st }}$ quadrant
(B) $1^{\text {st }}$ and $2^{\text {nd }}$ quadrant
(C) $1^{\text {st }}$ and $3^{\text {rd }}$ quadrant
(D) $1^{\text {st }}$ and $24^{\text {th }}$ quadrant
58. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ then $f((f(x)))$ is
(A) $\frac{x}{\sqrt{1+x^{2}}}$
(B) $\frac{x}{\sqrt{1+2 x^{2}}}$
(C) $\frac{x}{\sqrt{1+3 x^{2}}}$
(D) None of these
59. If α, β, γ are positive unequal real numbers then which of the following is correct
(A) $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)<4 \alpha \beta \gamma$
(B) $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)<8 \alpha \beta \gamma$
(C) $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)>8 \alpha \beta \gamma$
(D) None of these
60. If ω is a complex cube root of unity, then $\omega^{3 n+1}+\omega^{6 n+2}(n$ is an integer $)$ is equal to
(A) 2
(B) 1
(C) 0
(D) -1

